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FOREWORD

This report was prepared by the Metals Behavior Branch, Metals

and Ceramics Division, Air Force Materials Laboratory. The work was

performed inhouse under Project 7351, "Metallic Materials For Air Forc

Weapon System Components," Task 735106, "Behavior of Metals Used in

Flight Vehicle and Engine Structural Applications," and was administer-

ed under the direction of the Air Force Materials Laboratory, Air

Force Systems Command, Wright-Patterson Air Force Base, Ohio. The

research was conducted by Alten F. Grandt, Jr. of the Metals Behavior

Branch.

The report covers work conducted March 1974 through December 1974

and was submitted in May 1975.

The author is grateful to A.T. Jones for providing the original

stress intensity factor and COD curves of Reference 10 needed to con-

struct the weight functions employed here. The assistance of C.W.

Smith in pointing out a numerical error in one of the examples in

an earlier draft is also appreciated.
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SECTION I

INTRODUCTION

A stress intensity factor (KI) solution was obtained in previous

work [13 for radially cracked holes in large plates loaded with arbi-

trary crack face pressure. When the pressure is specified as the hoop

stress surrounding an unflawed fastener hole subjected to complex load-

ing, stress intensity factors are readily found for cracked numbers by

the linear superposition method [1-5]. Stress intensity factor calibra-

tions obtained in this manner agreed well with results found by inde-

pendent analytical [6] and experimental [7] methods.

A similar procedure is employed in this paper to obtain KI calibra-

tions for two-dimensional rings containing one and two radial cracks.

This configuration might be used to model service cracks found in thick

walled cylinders, turbine disks, or as free boundary corrections for the

fastener hole cracks discussed in, Reference 1.

First, a weight function technique is use4 to find KI for the crack

face pressure loading shown in Figure 1. Next, the linear superposition

method is employed to obtain stress intensity factor calibrations for

flawed rings in compression, for cylinders under internal and external

pressure, for rotating rings, and for thermal,ly loaded cylinders. Plane

strain results are given for members with inner to outer wall radius

ratios (Ri/R 0 ) of 0.5 and 0.8. Crack lengths varied up to 0.9 of the

wall thickness under mode I loading.

1
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SECTION II

DEVELOPMENT OF CRACK FACE PRESSURE SOLUTION

Rice [8] has shown that knowledge of the stress intensity factor

and displacement field for a given flaw geometry and loading (case 1)

enable construction of a weight function which depends only on geometry.

With the weight function one may then obtain KI for any other symmetric

loading (case 2) applied to the same geometry. This procedure is simi-

lar to weight function techniques used earlier by Bueckner [5] for edge

cracked strips, and has recently been applied to other problems of engi-

neering interest in References 1 and 9.

The problem solved in the present work consists of the radially

cracked ring (and its doubly cracked symmetric counterpart) shown in

Figure 1. Here Ri and R are the inner and outer radii of the ring, a

is the crack length, and p(x) is an arbitrary pressure loading perpen-

dicular to the crack faces. The pressure distribution is symmetric with

respect to the x-axis and does not allow the crack surfaces to close in

compression.

The known (case 1) problem used to construct the weight function is

shown in Figure 2. Although the geometry is identical to Figure 1, the

loading differs in that a concentrated compressive force P is applied

along the crack axis. Jones [10] has reported finite element solutions

to the stress intensity factor and crack mouth displacement (n ) for

ring shapes of Ri/R o = 0.5, 0.8, 0.9, and 0.945. This information is

2
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used here to construct the weight function required to solve the crack

face pressure loading for 0.5 and 0.8 Ri/R 0 aspect ratios.

Following Rice [81, the desired stress intensity factor is given by

KI = f s.h dr + f f.h dA (1)
rA

Here s is the stress vector acting on boundary F chosen around the crack

tip, while f is the body force in region A defined by F. The vector h

is the weight function determined for the flaw geometry by the case 1

loading. This weight function is given by

H 3u
h = h(x,y,a) = g- Da (2)

Here K is the case 1 stress intensity factor and u is the corresponding

displacement field. For plane strain conditions, H is the constant

E/(l-v2), where E is the elastic modulus and v is Poisson's ratio.

Defining the case I loading as the compressive force P shown in

Figure 2, and choosing the boundary F to consist of the inner ring

perimeter and the crack faces as shown in Figure 1, specific terms in

Equation 1 become

3



AFML-TR-75-121

x  along the crack faces

S Sy P(xW (3)

sx  Sy = 0 along the inner ring boundary

f = 0 (no body forces in area A) (4)

and

hy = H an along the crack faces (5)y 2Kj aa

Here Kj is Jones' stress intensity factor solution and n is the y-com-

ponent of the crack surface displacement (u y). Now, combining Equa-

tions 1-5 yields the desired KI solution.

K =k f P(x) - dx (6)KI =Kj 0oD

Since the pressure p(x) will be given by the specific problem of

interest, the only undefined term in Equation 6 is the partial deriva-

tive Although only the crack mouth dispiacement no (the value oftive0

p at x = 0) is given by Jones [10], it is shown in Reference 1 that the

entire crack shape (i.e. p for 0 < x < a) can be constructed to satis-

factory accuracy from knowledge of n and KI. This procedure involves

using a conic section given by Orange [11] for fitting edge crack sur-

face displacements. As shown in Reference 1, crack shapes determined by

4



AFML-TR-75-121

the conic section for radially flawed holes loaded in remote tension

agree well with crack surface displacements found by the finite element

method. Thus, differentiating the conic section representation for n,

Equation 6 is readily solved for KI. Applications of this solution by

means of the linear superposition method are presented in the following

section.

5
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SECTION III

LINEAR SUPERPOSITION APPLICATIONS

Through the linear superposition principle, the solution to the

problem shown in Figure 1 may be used to convert stress data for un-

flawed rings and cylinders into stress intensity factors for cracked

members. This conversion is accomplished by defining the pressure p(x)

in Equation 6 as the unflawed hoop stress occurring along a radial line

coinciding with the desired path of crack propagation. It has been

shown previously [1,3,5,7] that stress intensity factors found by the

linear superposition method correspond to values determined directly for

cracked components. The application of the solution derived in the

previous section is demonstrated below with examples of calculations for

flawed rings and cylinders. These examples have been chosen to demon-

strate that the weight function/linear superposition method gives re-

sults of acceptable accuracy and may be applied to complex engineering

problems with relative ease.

1. COMPRESSIVE LOADING

The compressively loaded ring shown in Figure 2 provides a con-

venient check on the accuracy of the present solution. The stress

distribution for an unflawed ring of aspect ratio Ri/R ° = 0.5 subjected

to a compressive force is given in Reference 12. By defining p(x) as a

least squares polynomial representation for the hoop stress perpendicu-

lar to the loading axis, Equation 6 gives the stress intensity factor

calibrations for single and double cracked rings shown in Figure 3.

6
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Note that although the linear superposition values slightly exceed

Jones' finite element analysis, with the exception of long double cracks

(a/(R0 -Ri) > 0.75), both methods agree within five percent. In addition,

experimental measurements by the compliance derivative method reported

by Jones [10] for 7075 T6 aluminum cylinders agree well with the single

crack superposition results.

The numerical approximations employed in the present calculations

most likely explain the differences indicated in Figure 3. Since only

the crack mouth displacement data were reported by Jones, it was neces-

sary, for example, to approximate the remaining crack shape with a conic

section as described previously. Other sources of error lie in the

least squares representation for p(x) and in the numerical integration

of Equation 6. In spite of these approximations, however, the accuracy

of the linear superposition solution is adequate for most engineering

calculations.

2. REMOTE TENSION

Flawed rings loaded in remote tension as shown in Figures 4 and 5

provide another test problem for the present analysis. Bowie and

Freese [13] have obtained stress intensity factor solutions by conformal

mapping techniques for several single crack ring geometries. Unflawed

stresses for aspect ratios of 0.5 and 0.8 were taken from the remote

tension analysis reported in Reference 14 and used to define p(x) as

before. Linear superposition results computed from Equation 6 are

compared with Bowie and Freese's data in Figures 4 and 5. The dashed

lines in Figure 5 represent single crack values of questionable accuracy

7
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as reported by Bowie and Freese. Note again the good agreement between

single crack results computed by the simple linear superposition method

and those obtained by more sophisticated means. Since Bowie and Freese

did not report solutions for double cracks, the linear superposition

values shown for two cracks in Figures 4 and 5 represent new calibra-

tions.

3. PRESSURIZED CYLINDERS

Cylinders loaded with an internal pressure P as shown in Figures 6

and 7 were considered by the present method. The unflawed hoop stress

analysis for internal bore pressure reported in Reference 14 was used to

define p(x) in Equation 6. The single and double flaw results are shown

in Figures 6 and 7 for aspect ratios of 0.5 and 0.8. Since the crack

faces of the cylinder will also be subjected to the pressure p, results

due to constant crack face loading are also shown. The complete solu-

tion obtained by adding the bore pressure and crack face pressure results

is equivalent to the remote tension results of Figures 4 and 5. Note

that as the ring becomes thinner (Ri/R 0 gets larger), the effect of the

crack face loading decreases with respect to the bore pressure. This

trend was continued with other unreported results for Ri/R o = 0.9 rings.

4. CENTRIFUGAL LOADINGS

The present solution may also be used to study cracks which may

occur in members used to approximate rotating turbine disks. Consider,

for example, the centrifugal loading caused by rotating a ring of density

p with an angular velocity w as shown in Figure 8. The unflawed hoop

stresses for rotating rings are reported in Reference 12. Fitting this

8
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analysis with a polynomial for p(x) as before, Equation 6 gives the

single and double crack stress intensity factors in Figure 8. Previous

estimates for the single flaw case are reported by Williams and Isherwood

in Reference 15. Their results, obtained by an approximate method based

on the mean stress in the unflawed member, are seen to agree closely

with the present analysis.

5. NOTCHED TURBINE DISK

The engineering utility of the present solution may be further

demonstrated with a more complex example. Owen and Griffiths [163 have

reported a finite element analysis for radial cracks occurring at the

keyway in a rotating steam turbine disk. Their idealized two-dimensional

model for the actual disk is shown in Figure 9 and is described in more

detail in Reference 16. The cracks occur at the root of a 1-inch deep

keyway in the uniform thickness ring with Ri = 9 inch and R° = 16 inches.

Stress intensity factors found by the compliance derivative method by

Owen and Griffiths are shown in Figure 9. The results given are for a

disk with the material properties shown in Figure 9 rotating with an

angular velocity w = 3000 rpm and with a uniform blade force F of

7400 psi acting on the circumference of the rim.

The unflawed hoop stress distribution at the notch is also reported

for these operating conditions in Reference 16. Defining p(x) as the

polynomial representation for stresses with and without the blade

forces, Equation 6 gives the single crack results shown in Figure 9.

Note that the linear superposition values agree well with the finite

element analysis for small crack lengths, but exceed Owen and Griffiths'

data by as much as fifteen percent for the longer flaws. This latter

9
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difference may be due to the fact that it was necessary here to ap-

proximate the actual Ri/R o = 9/16 = 0.56 disk with a ring shape of

Ri /R = 0.5. This approximation could, of course, be eliminated if the

KI and displacement data were available to construct the actual weight

function for a 0.56 aspect ratio disk. In addition, the effect of the

notch was ignored in the calculations of Equation 6 by assuming the x-

coordinate originated at the tip of the keyway. The influence of the

keyway is, however, represented in the unflawed hoop stress p(x).

6. THERMALLY STRESSED DISKS

Consider a Ri/R o = 0.5 ring to be subjected to a thermal gradiant

AT = T -Ti as shown in Figure 10. The thermal stress field for an

unflawed disk is given in Reference 12 as a function of AT, the coef-

ficient of thermal expansion a, the elastic modulus E, and Poisson's

Ratio v. Defining p(x) in Equation 6 as the uncracked stress distribution

for T 0 > Ti . and assuming v = 0.3, gives the stress intensity factor

results in Figure 10. Examining the absolute value of KI, rather than

the dimensionless coefficient KI/[aE(To -Ti)VTra] plotted in Figure 10,

it is seen that KI peaks at a/(R o -Ri) = 0.65 for the double crack problem

and at a/R0 -Ri) = 0.35 for a single flaw. This decreasing KI result is

in qualitative agreement with experiments in thermally stressed graphite

rings which indicate that radial cracks may initially extend and then

arrest under certain temperature conditions (17).

10
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CONCLUSIONS

A stress intensity factor solution has been described for radially

cracked rings loaded with arbitrary crack face pressure. The method of

solution employs a weight function technique which allows the use of

existing stress intensity factor and crack displacement data for a given

loading to calculate KI for other loadings applied to the same geometry.

The crack face pressure solution obtained in this manner is then taken

in conjunction with the linear superposition method to solve several

flawed ring problems. In applying the linear superposition method, the

arbitrary crack face pressure is simply defined as the unflawed hoop

stress occurring in the radial crack growth direction of interest.

Stress intensity factors calculated from the crack face pressure solu-

tion through the linear superposition method agree well with previous

solutions obtained by more complex experimental and analytical tech-

niques.

The ability to convert unflawed hoop stress data into accurate KI

solutions for cracked members has significant engineering implications.

Since stress intensity factors are readily obtained from the uncracked

results, computation time and costs are greatly reduced. If unflawed

hoop stress solutions are available for the uncracked component, as was

the case for the examples discussed here, stress intensity results are

obtained immediately through the solution of Equation 6. If, on the

other hand, uncracked stresses are unavailable, it is much quicker and

easier to obtain the unflawed solution required for the linear super-

position method and then solve Equation 6, than to analyze the singular

11
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crack tip stress field directly. Furthermore, only one unflawed stress

distribution is required to calculate KI for a wide range of crack

lengths, while methods which consider the crack tip directly must be

regolved for each crack length to obtain the complete calibration curve.

As fracture mechanics criteria continue to be included in future

design criteria (see Reference 18, for example), there will be an in-

creasing need for the engineer to quickly find stress intensity factors

for a variety of component shapes and loadings. The weight function/

linear superposition method discussed here for flawed rings, and in

Reference 1 for cracked fastener holes, provides the engineer with an

efficient tool for making the necessary K calculations. Since the

proposed method still requires accurate K and crack displacement data

for one loading configuration to compute the weight function, other

sophisticated analysis methods (e.g., finite elements, conformal mapping,

etc.) are still needed for different geometries. Once the initial prob-

lem is solved, however, the present technique may then be used to rapidly

find calibrations for many other loading configurations.

12
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Y

p(x)

/Ro

Figure 1. Radially Cracked Ring Loaded with Crack Face Pressure
(Case 2)
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PY

Figure 2. Radially Cracked Ring Loaded in Compression (Case 1)
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Figure 3. Stress Intensity Factor Calibration for a racked Ring

Loaded in Compression (Ri/R o = 0.5)
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Figure 4. Stress Intensity Factor Calibration for a Cracked Ring
Loaded in Remote Tension (Ri/R ° = 0.5)
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Figure 5. Stress Intensity Factor Calibration for a Cracked Ring
Loaded in Remote Tension (Ri/R o = 0.8)
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Figure 6. Stress Intensity Factor Calibration for a Cracked Cylinder
Under Internal Pressure (R.i/R =0.5)
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Figure 7. Stress Intensity Factor Calibration for a Cracked Cylinder

Under Internal Pressure (R.IRo = 0.8)
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Figure 8. Stress Intensity Factor Calibration for a cracked Ring
Rotating With Angular Velocity w

20



AFML-TR-75-1 21

0(

LLQ~r~O U

r~.ao 0 0

00

z <I

LLd LL)U

00Z

w I

0r z

LL 4-

_ z

Ln>

(3 cr
u . ~

00

0 0 0 0 0 0 0 0
cl 0 OD ~j

21



AFMI,J-5~-K121

1.0-T 
R

0.8 Ri /RO= 0.5+

.6

0,-

ICRACK

0 1 1 1

0 0.2 0.4 0.6 0.8 1.0

a/ (RO- Ri)

Figure 10. Stress Intensity Factor Calibration for a
Cracked Ring Subjected to a Thermal Gradient.
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